NEC 304 STLD

Lecture 8

Minimization with Karnaugh Maps

Rajeev Pandey Department Of ECE rajeevvce2007@gmail.com

Overview

- ° K-maps: an alternate approach to representing Boolean functions
- [°] K-map representation can be used to minimize Boolean functions
- [°] Easy conversion from truth table to K-map to minimized SOP representation.
- ° Simple rules (steps) used to perform minimization
- ° Leads to minimized SOP representation.
 - Much faster and more more efficient than previous minimization techniques with Boolean algebra.

Karnaugh maps

- ° Alternate way of representing Boolean function
 - All rows of truth table represented with a square
 - Each square represents a minterm
- Easy to convert between truth table, K-map, and SOP
 - Unoptimized form: number of 1's in K-map equals number of minterms (products) in SOP
 - Optimized form: reduced number of minterms

Karnaugh Maps

- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

$$\overset{B}{\rightarrow} \overset{O}{0} \overset{1}{1} \overset{O}{0} \overset{1}{1} \overset{F=AB'+A'B}{\overset{O}{1}} F = AB' + A'B$$

$$\overset{A}{\rightarrow} \overset{B}{} \overset{O}{0} \overset{1}{1} \overset{I}{1} \overset$$

F = AB'C' + AB'C + ABC + ABC' + A'B'C + A'BC'

Rules for K-Maps

- We can reduce functions by circling 1's in the K-map
- Each circle represents minterm reduction
- Following circling, we can deduce minimized and-or form.

Rules to consider

- Every cell containing a 1 must be included at least once.
- The largest possible "power of 2 rectangle" must be enclosed.
- The 1's must be enclosed in the smallest possible number of rectangles.

Karnaugh Maps

- ° A Karnaugh map is a graphical tool for assisting in the general simplification procedure.
- ° Two variable maps.

$$\begin{array}{c}
A & 0 & 1 \\
A & 0 & 1 \\
1 & 1 & 0
\end{array}$$

$$\begin{array}{c}
B & 0 & 1 \\
A & 0 & 1 \\
A & 0 & 1 \\
1 & 1 & 1
\end{array}$$

$$\begin{array}{c}
B & 0 & 1 \\
A & 0 & 1 \\
A & 0 & 1 \\
1 & 1 & F = AB + A'B + AB' \\
1 & 1 & 1 & F = A + B
\end{array}$$

° Three variable maps.

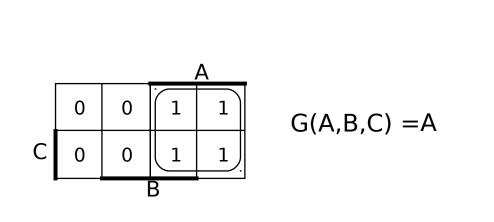
$$\begin{array}{c}
BC \\
0 0 01 11 10 \\
0 0 1 0 1 \\
1 1 1 1 F = A + B'C + BC'
\end{array}$$

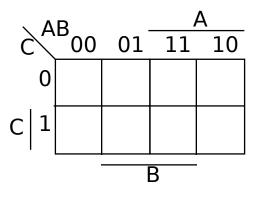
F = AB'C' + AB'C + ABC + ABC' + A'B'C + A'BC'

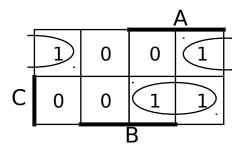
Karnaugh maps

° Numbering scheme based on Gray–code

- e.g., 00, 01, 11, 10
- Only a single bit changes in code for adjacent map cells
- This is necessary to observe the variable transitions

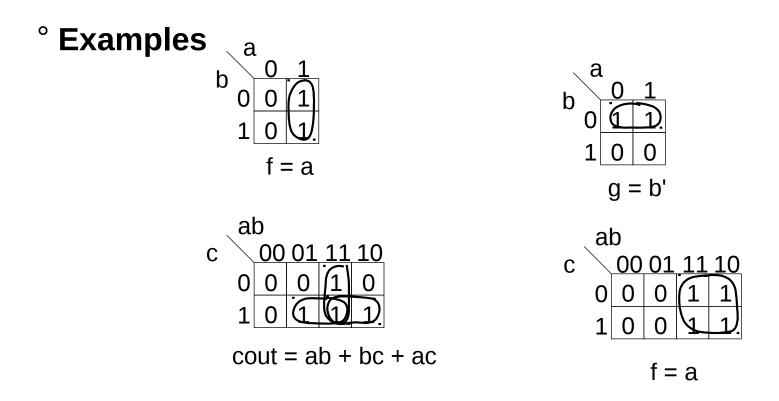




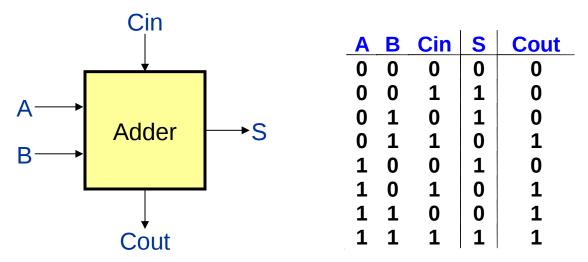


 $F(A,B,C) = \sum m(0,4,5,7) AC + B'C'$

More Karnaugh Map Examples



- 1. Circle the largest groups possible.
- 2. Group dimensions must be a power of 2.
- 3. Remember what circling means!



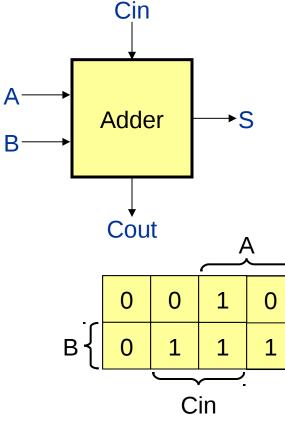
How to use a Karnaugh Map instead of the Algebraic simplification?

S = A'B'Cin + A'BCin' + A'BCin + ABCin

Cout = A'BCin + A B'Cin + ABCin' + ABCin

= A'BCin + ABCin + AB'Cin + ABCin + ABCin' + ABCin

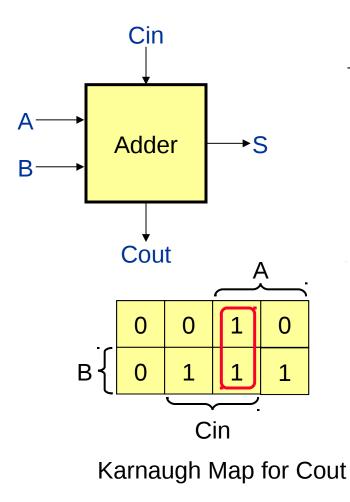
- = (A' + A)BCin + (B' + B)ACin + (Cin' + Cin)AB
- $= 1 \cdot BCin + 1 \cdot ACin + 1 \cdot AB$
- = BCin + ACin + AB



Karnaugh Map for Cout

Α	В	Cin	S	Cout
0	0	0	0	0 ←
0	0	1	1	0 🔶
0	1	0	1	0 🔶
0	1	1	0	1 🔶
1	0	0	1	0 🔶
1	0	1	0	1 🔶
1	1	0	0	1 🔶
1	1	1	1	1 🔶

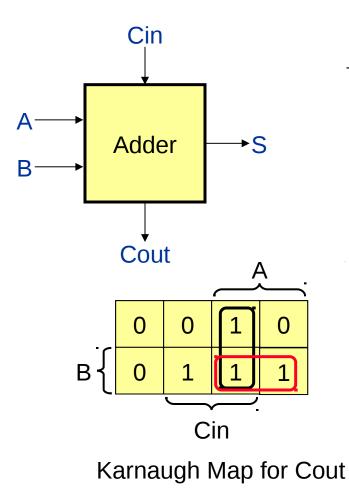
Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.



Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

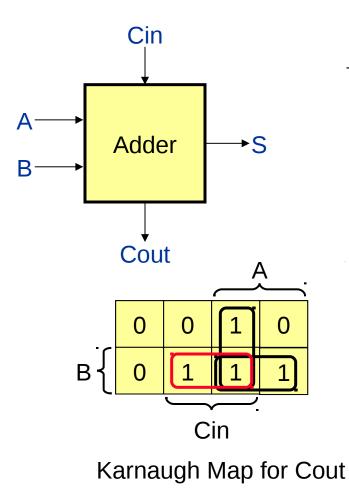
Cout = ACin



Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

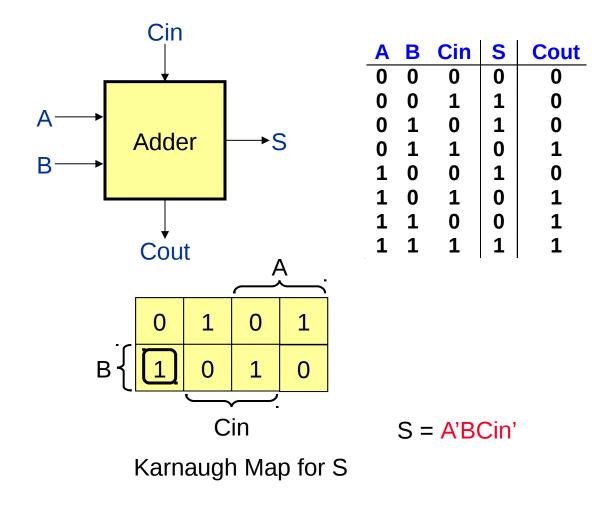
Cout = Acin + AB

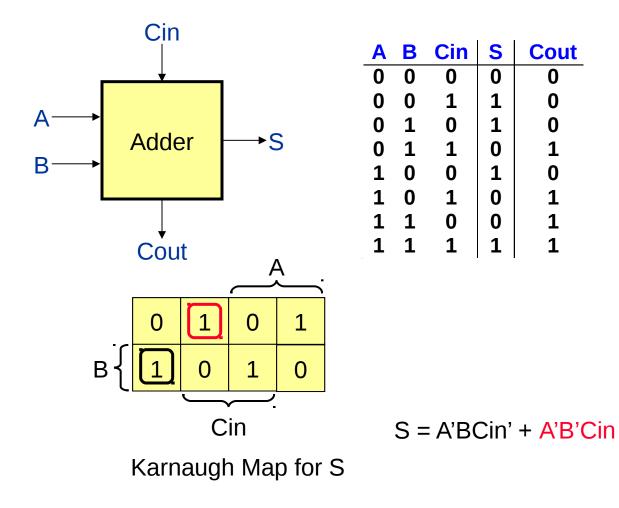


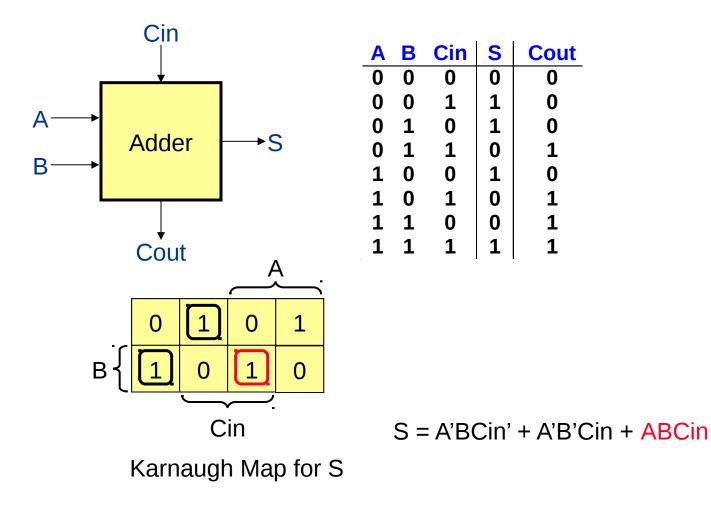
Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now we have to cover all the 1s in the Karnaugh Map using the largest rectangles and as few rectangles as we can.

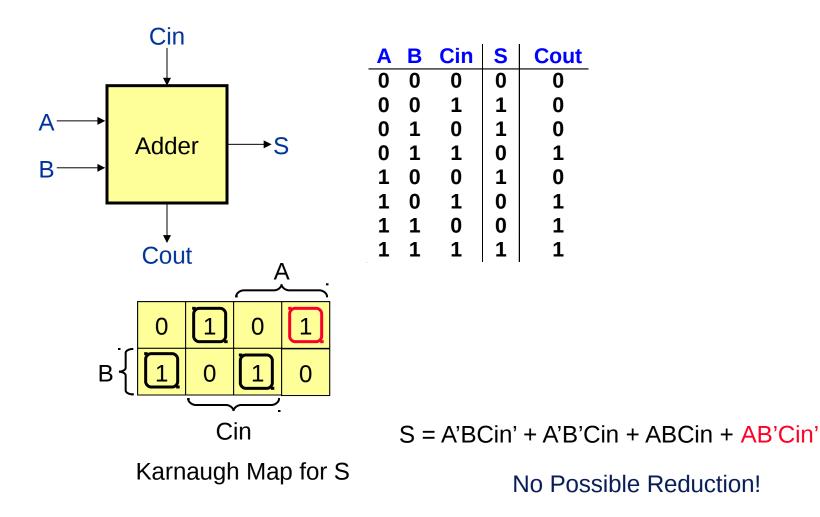
Cout = ACin + AB + BCin







Can you draw the circuit diagrams?



Summary

- Karnaugh map allows us to represent functions with new notation
- ° Representation allows for logic reduction.
 - Implement same function with less logic
- ° Each square represents one minterm
- ° Each circle leads to one product term
- Not all functions can be reduced
- [°] Each circle represents an application of:
 - Distributive rule -- x(y + z) = xy + xz
 - Complement rule x + x' = 1